skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stoltzfus, Arlin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. An underexplored question in evolutionary genetics concerns the extent to which mutational bias in the production of genetic variation influences outcomes and pathways of adaptive molecular evolution. In the genomes of at least some vertebrate taxa, an important form of mutation bias involves changes at CpG dinucleotides: if the DNA nucleotide cytosine (C) is immediately 5′ to guanine (G) on the same coding strand, then—depending on methylation status—point mutations at both sites occur at an elevated rate relative to mutations at non-CpG sites. Here, we examine experimental data from case studies in which it has been possible to identify the causative substitutions that are responsible for adaptive changes in the functional properties of vertebrate haemoglobin (Hb). Specifically, we examine the molecular basis of convergent increases in Hb–O 2 affinity in high-altitude birds. Using a dataset of experimentally verified, affinity-enhancing mutations in the Hbs of highland avian taxa, we tested whether causative changes are enriched for mutations at CpG dinucleotides relative to the frequency of CpG mutations among all possible missense mutations. The tests revealed that a disproportionate number of causative amino acid replacements were attributable to CpG mutations, suggesting that mutation bias can influence outcomes of molecular adaptation. This article is part of the theme issue ‘Convergent evolution in the genomics era: new insights and directions’. 
    more » « less
  3. A comprehensive phylogeny of species, i.e., a tree of life, has potential uses in a variety of contexts, including research, education, and public policy. Yet, accessing the tree of life typically requires special knowledge, complex software, or long periods of training. The Phylotastic project aims make it as easy to get a phylogeny of species as it is to get driving directions from mapping software. In prior work, we presented a design for an open system to validate and manage taxon names, find phylogeny resources, extract subtrees matching a user’s taxon list, scale trees to time, and integrate related resources such as species images. Here, we report the implementation of a set of tools that together represent a robust, accessible system for on-the-fly delivery of phylogenetic knowledge. This set of tools includes a web portal to execute several customizable workflows to obtain species phylogenies (scaled by geologic time and decorated with thumbnail images); more than 30 underlying web services (accessible via a common registry); and code toolkits in R and Python (allowing others to develop custom applications using Phylotastic services). The Phylotastic system, accessible via http://www.phylotastic.org , provides a unique resource to access the current state of phylogenetic knowledge, useful for a variety of cases in which a tree extracted quickly from online resources (as distinct from a tree custom-made from character data) is sufficient, as it is for many casual uses of trees identified here. 
    more » « less
  4. Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020. 
    more » « less